KOBIC 웹사이트의 KOBICian's Story에 6월 23일에 게재 예정인 나의 글을 블로그에 따로 소개하고자 한다. 원문에는 없던 링크와 그림을 삽입하고 약간 수정하였다.
데이터 거버넌스의 여러 모델
요즘 거버넌스(governance)라는 낱말이 심심치 않게 많이 쓰입니다. 동사 govern이 ‘지배하다, 통치하다’ 등의 뜻을 지니고 있으니 이로부터 파생된 거버넌스는 ‘통치, 지배, 관리, 운영’ 정도의 뜻을 지닐 것으로 생각하기 쉽습니다. 틀린 해석은 아니지만 최근 들어서 다른 낱말과 같이 쓰이면서 그 의미가 더욱 확장되었습니다. 예를 들자면 ‘데이터 거버넌스’와 같은 것입니다. 거버넌스의 현대적 의미는 조직이나 기관 또는 시스템을 지휘하고 관리하며 책임을 지는 방식의 틀, 절차 그리고 관행입니다. 동사 govern에서 파생된 또 다른 명사 government(정부)는 폐쇄적이고 수직적인 소통이 주류를 이루지만, 이와 대조적으로 거버넌스에서는 외부와 네트워크로 연결되는 개방적이면서도 열린 조직을 추구한다고 합니다. 그래서 어떤 사전을 찾아보면 거버넌스를 ‘협치(協治)’로 풀이합니다.
현대 지능정보사회에서 데이터의 중요성은 아무리 강조해도 지나치지 않습니다. 양질의 데이터를 확보하여 효율적으로 사용하고, 법령을 준수하며, 나아가서는 미래 경쟁력 확보를 위해 데이터를 전략적 자산으로 만들기 위해서는 잘 설계되고 실행 가능성을 갖춘 데이터 거버넌스가 필요합니다.
1990년대에 접어들면서 과학 논문이 유료 저널에 게재되는 일이 흔해지고 데이터 접근도 어려워지자, 오픈 사이언스 재단에서는 2002년 부다페스트에 모여서 과학 및 학술 연구 결과물을 누구나 자유롭게 접근하고 사용할 수 있도록 하자는 원칙을 제시하였습니다. 2021년 UNESCO에서는 194개 회원국이 만장일치로 오픈 사이언스 권고안을 채택하였습니다. 여기에서는 오픈 액세스, 오픈 데이터, 오픈 인프라, 시민 참여 및 전통 지식 체계와의 대화 등 오픈 사이언스의 핵심 요소를 구성하고 실행을 위한 우선 과제를 제시하게 되었습니다. 이 권고안의 탄생 배경에는 역설적으로 COVID-19 팬데믹이라는 대재앙이 매우 중요하게 작용하였습니다. 병원체 게놈 정보의 신속한 공개 덕분에 빠른 진단과 백신·치료제 개발이 가능하였고, 데이터 공유를 통해 신속하고 동시다발적인 연구 협력을 할 수 있었습니다. 이 사실은 UNESCO의 오픈 사이언스 관련 문서에도 실려 있습니다.
오픈 사이언스 원칙의 올바른 실행 측면에서도 데이터 거버넌스는 큰 의미를 갖습니다. 단지 연구 데이터를 개방한다고 해서 이를 모두가 신뢰하고 쓸 수 있는 것은 아닙니다. 데이터의 품질을 일정 수준으로 끌어 올리고, 그 사용에 대한 책임 소재를 명확히 하며, 접근 권한을 정교하게 설계하는 것은 모두 데이터 거버넌스의 영역입니다. FAIR(Findable·Accessible·Interoperable·Reusable) 원칙은 오픈 사이언스와 동일한 것은 아니지만 상호 보완 관계에 있으며, 오픈 사이언스를 실현하는 도구가 될 수 있습니다. 현재 KOBIC의 국가바이오데이터스테이션은 외부 기관과 협력하여 FAIR 성숙도를 점검하는 일에 착수하였습니다(참고: GO FAIR Initiative).
오픈 사이언스는 얼핏 생각하면 데이터의 자산화 경향과 충돌하는 것처럼 보입니다. 데이터를 생산한 주체는 이를 소유물로 인식하고 배타적 권리를 주장하려는 경향이 있습니다. 산업계에서는 당연히 이를 보호하고자 합니다. 정부 연구개발과제로 생성된 연구 데이터를 국가적 전략 자산으로 여겨서 통제하려는 것도 어찌 보면 자연스러운 현상입니다. 특히 유전체 정보나 보건의료 정보는 개인 차원에서 보호해야 하는 민감정보이자 기업·국가 차원의 경제적 자원이지만, 새로운 연구 성과로 이어질 수 있는 중요한 재료이므로 공공적 활용을 더욱 촉진하기 위해 개방해야 한다는 목소리도 높습니다.
이러한 요구사항을 전부 충족시키는 것은 어차피 불가능하니 적절한 중간 지점에서 타협해야 합니다. 데이터 거버넌스의 한 형태라고 볼 수 있는 데이터 커먼즈(data commons)가 해결책이 될 수 있습니다. 커먼즈(commons), 즉 공유지는 본래 모두가 함께 공유하고 관리하는 자원을 뜻합니다. 1960년대 말 사이언스에 발표된 유명한 논문 ‘공유지의 비극(The Tragedy of the Commons)’에서 지적했듯이, 공유 자원은 개인의 합리적인 이기심에 의해 철저히 파괴되고 고갈된다고 하였습니다. 그러나 엘리너 오스트롬(1933-2012)은 ‘커먼즈의 거버넌스(원제는 Governing the Commons: The Evolution of Institutions for Collective Action’)라는 책을 통해서 이를 반박했습니다. 즉 공동체가 공통의 규칙과 책임 아래 자원을 개방하고 공동으로 관리하여 이를 지속적으로 지켜 나갈 수 있음을 주장하였습니다. 경제학에는 시장과 국가만 존재한다는 이분법을 깨뜨린 공로로 오스트롬은 2009년 노벨 경제학상을 수상하였으며, 현대적 의미의 거버넌스 개념을 제창하고 정립하였다고 평가해도 무방할 것입니다.
요즘은 이로부터 한발 더 나아가서 신뢰 기반의 커먼즈(trusted commons) 개념이 등장하였습니다. 이는 전통적 커먼즈 모델에 신뢰, 안전성 및 책임의 요소를 더한 것입니다. 경제적 활용 가치가 매우 높지만 함부로 공개될 경우 정보 주체에게 피해를 줄 수 있는 보건·유전체 정보의 안전하고도 책임 있는 활용을 선도해 나갈 수 있는 것이 바로 신뢰 기반 커먼즈입니다. 미국 NIH의 dbGaP(The database of Genotypes and Phenotypes)이나 유럽의 EGA(European Genome-phenome Archive), 그리고 KOBIC의 인체유래데이터은행이 바로 이러한 신뢰 기반 커먼즈의 사례입니다.
신뢰기반 커먼즈의 핵심 요소를 간단히 설명하자면 다음과 같습니다.
- 접근 통제(access control): 데이터를 누가 어떤 조건에서 사용할 수 있는지를 명확히 정함
- 책임성(accountability): 데이터를 사용하는 사람은 그 사용 내역과 목적에 대해 책임을 져야 하며 기록을 남겨야 함
- 투명성(transparency): 데이터가 어떻게 수집되고 누구에게 공유되며 어떻게 사용되는지 공개해야 함
- 형평성과 포용성(equity & inclusion): 데이터 기여자나 소외된 집단도 공정하게 혜택을 누릴 수 있어야 하며, 차별 없이 접근할 수 있도록 배려해야 함
- 상호성(reciprocity): 데이터를 사용하는 사람은 그 결과나 혜택을 다시 커뮤니티에 돌려줘야 함
지난 4월 미국 신생명공학 국가안보위원회(National Security Commission on Emerging Biotechnology)가 발간한 보고서 ‘Charting the Future of Biotechnology’에 따르면, 미국은 생명공학 분야에서 중국의 급부상을 경계하면서 유전체, 인공지능(AI) 및 바이오제조 등에서 자국의 지속적인 우위를 유지하기 위한 새로운 모델인 Web of Biological Data를 구축할 것을 제안하였습니다. 이는 신뢰 기반 커먼즈의 확장판으로서 FAIR + 신뢰 기반 + AI-ready 상태의 국가적 디지털 인프라에 해당하며, 하나의 통합된 창구(single access point)를 제공한다는 점이 핵심입니다. 부연하자면 분절되어 존재하는 데이터 리포지토리에 대한 검색 및 활용을 한 곳에서 제공함으로써 사용자의 편의성을 높일 수 있게 한 것이지만. 신뢰할 수 있는 국가 또는 동맹국 중심의 국제 협력을 유도하기 위한 밑그림일 수도 있습니다.
새 정부가 들어서면서 모두가 국정과제를 수립하기 위한 바쁜 움직임에 들어갔습니다. AI는 이미 우리 주변에 깊숙하게 자리 잡았고, 머지않아 바이오 경제 시대에 진입하게 될 것입니다. KOBIC이 정성스럽게 모은 양질의 바이오 연구 데이터가 안전하게 널리 활용되어 공공의 이익에 기여하고, 아울러 글로벌 바이오 데이터 저장소의 모범이 되기를 기대해 봅니다.