2021년 9월 23일 목요일

2021년 9월에 올림푸스 DSLR E-620을 쓴다는 것은...

디지털 카메라의 시장이 해가 갈수록 쭈그러들고 있다는 것은 누구나 다 아는 사실이다. 레트로 감성에 필름 카메라와 바이닐(LP)이 잠시 인기를 얻고 있지만 산업의 흐름을 바꿀 정도는 되지 못하는 것으로 안다.

스마트폰이 일반인을 위한 카메라 수요를 흡수하면서 소위 전문가용 카메라로 불리던 DSLR은 아예 판형을 풀프레임(과거 필름의 크기와 같은 36 x 24mm)으로 키우거나 혹은 동일한 센서 크기를 갖는 미러리스로 체제를 바꾸어서 진지한 아마추어 계층을 흡수하고 있다. 그래도 과저 필름 DSLR의 전성기에 비교할 바는 아니다. 여전히 글로벌 시장에서는 캐논이 가장 큰 비중을 차지하고 있지만, 풀프레임 미러리스라는 새로운 유행을 불러 일으킨 데에는 소니가 크게 기여한 것 같다.

나도 한때는 꽤 진지하게 사진을 찍고 직접 암실 작업(흑백)을 하던 사람이었다. 그런데 그게 벌써 30년 가까운 과거의 일이 되고 말았다. 거실 장식장에는 이제 작동 상태를 신뢰할 수 없는 카메라 본체와 렌즈가 꽤 많이 잠을 자고 있다. 나 역시 뒷주머니에 꽂고 다니던 휴대폰을 꺼내어 사진을 찍고, 특별한 후처리 없이 구글 포토에 그냥 자동 업로드하는 사진 생활에 익숙해졌기 때문이다.

나의 첫 DSRL은 올림푸스의 E-620이다(PRREWIEW에 실린 정보 링크). 2010년 11월 초에 두 개의 줌렌즈를 포함한 키트를 할인 행사 가격에 구입하여 한동안 잘 사용하였으나, 만 4년째가 되면서 IS(image stabilization) 기능에 문제가 생기면서 점점 쓰지 않게 되었다(관련 글 링크). 그런 일이 벌어진 직후 가족 여행을 위해 펜탁스 Q 10(5-15mm 렌즈킷)을 구입하여 조금 쓰다가 현재와 같이 스마트폰으로만 사진을 찍는 체제로 굳어지게 되었다. E-620은 다른 필름 카메라와 마찬가지로 거실 장식장 속에 갖인 상태로 몇 년을 그대로 지내고 있었다. 

어떤 일이 갑작스런 계기가 되었는지는 잘 기억이 나지 않는다. 이번 추석 연휴를 보내면서 문득 (D)SLR의 감성이 그리워지기 시작했다. 터치 스크린이 아니라 손으로 직접 하드웨어 버튼(또는 다이얼)을 조작하고, 아이 레벨 뷰파인더에 직접 눈을 대고 피사체를 바라보며 셔터 릴리즈 버튼을 누르는 경험을 다시 해 보고 싶었다. 배터리를 충천하여 실로 오랜만에 카메라를 조작해 보았다. 확실히 Ansmann의 호환 배터리는 문제가 있었다. 충분한 시간을 충전하였지만 충전기의 표시등이 녹색으로 바뀌는 것이 아니라 적색 상태에서 깜빡거리는 것을 발견하였다. 그러나 정품 배터리는 제대로 작동을 하였다. 넥 스트랩의 중간에 덧댄 미끄럼 방지용 인조 가죽(?)은 부스러지기 시작하였고, USB 단자를 덮는 고무 마개는 케이블을 꽂기 위해 젖히는 순간 탄성이 다 없어져서 툭 부러져 버렸다.

비록 오랜 세월을 견디면서 일부 외장재는 이렇게 부스러지는 상태였으나, 2014년 11월에는 분명히 문제가 있던 E-620가 마치 잠에서 깨어나듯 조금씩 제 기능을 되찾기 시작하였다. 처음에는 작동이 되다 안되다는 반복하는 것으로 여겨졌으나, 그것은 상태가 나빠진 호환 배터리를 충분히 충전하지 못해서 생긴 문제였던 것 같다. 


어댑터를 통해서 헬리오스 수동 렌즈를 끼워 보았다.

올림푸스한국은 2020년 5월, 국내에서 카메라 사업을 완전히 종료함을 밝힌 바 있다. 사후 서비스는 2026년 3월 31일까지 한시적으로 운영된다. 한국 소비자들이 유난히 센서의 크기에 집착하는 것이었을까? 공식적으로는 한국 시장에서 물러나는 것이지만, 올림푸스가 계속 카메라를 생산할지는 알 수가 없다. 마이크로 포서즈 형식의 카메라 및 호환 렌즈는 앞으로 나온다고 해도 해외 직구를 통해 사는 것 말고는 구입할 방법이 없다. 게다가 E-620은 훨씬 전에 버림받은 '포서즈' 형식이 아니겠는가? 올림푸스의 마이크로 포서즈 시스템 바디 모델 번호 체계는 너무나 헷갈리므로 별도의 문서를 참조하는 것이 낫다. OM-D는 E-M# 형태의 바디에 해당하는 것 같다.

다행스럽게도 어제 하루 동안의 출사에서 배터리 문제를 제외하면 E-620은 별 문제가 없이 작동하는 것처럼 보였다. 2014년 늦가을 당시에는 왜 IS 불량 현상이 빚어졌는지 이해할 수 없을 정도였으니 말이다. 하지만 '가전제품'과 다를 바가 없는 DSLR 본체가 앞으로 얼마나 잘 작동할지는 예측하기 어렵다. 만약 E-620 본체가 정말로 수리가 어려울 정도로 망가진다면, 14-42 mm및 40-150 mm의 두 줌렌즈는 어디에 쓴단 말인가? 예비용으로 적절한 마이크로 포서즈 바디와 렌즈 어댑터(MMF-1/2/3)을 구해 두는 것이 옳을까? 아니면 차라리 캐논의 보급형 DSLR 바디를 사서 역시 놀고 있는 EF 렌즈를 끼워서 쓰는 것이 바람직할까?

추석 연휴 마지막 날에 군산에서 올림푸스 E-620으로 찍은 사진 몇 장을 올려 본다. 휴대폰으로 찍은 세로 사진 혹은 좌우로 긴 사진만 보다가 오랜만에 4:3 비유의 이미지를 보니 정말 느낌이 새롭다. 촬영 정보를 살펴보면 해상도는 휴대폰보다 더 낮다. 최대 해상도인 4032 x 3024 픽셀로 촬영해도 구글 포토의 무제한 업로드 기준인 1,600만 화소에 미치지 못한다.




자작 오디오 앰프가 제자리를 잡으면서 여가 시간에는 영화를 보는 것 말고는 별로 할 일이 없게 되었으므로 자연스럽게 다시 사진(장비)에 관심을 갖게 된 것일까? 다음에 관심을 갖게 될 대상은 혹시 자전거는 아닐까? 몇 가지 되지 않는 분야를 빙글빙글 돌아다니는 것만 같다.


2021년 9월 17일 금요일

박테리아 분류의 새로운 바람

그동안 Bacillus라는 genus는 최신의 잣대로는 별로 관계가 없는 박테리아까지 한데 품어주는 넉넉한 집 역할을 해 왔었다. 작년이었던가, 유전체학 시대에 걸맞는 분석 결과를 근거로 이렇게 많은 식구를 거느리던 바실러스 가족은 새로운 genus로 하나 둘 독립해 나가가기 시작하였다. 가장 큰 집안이었던 Bacillus subtilisBacillus cereus clade는 변화가 없지만, 나머지 것들은 생소한 genus 명을 갖게 된 것이다.

이러한 혁명적(?) 수준의 변화를 가져다 준 2020년의 주요 논문을 직접 찾아서 읽어보는 것이 올바른 자세임에는 틀림이 없다. 그러나 그것이 성가시다면, 중요한 사실을 요약하여 작성한 가벼운 글을 인터넷에서 찾아서 읽는 것도 나쁘지 않을 것이다. 다음의 글은 찰스 리버 연구소에서 근무하는 Christine Farrance라는 사람이 지난 7월에 게재한 글이다.

Reclassification of Bacteria Happens 

이 글이 실린 Eureka: a dose of science라는 웹사이트는 찰스 리버 연구소의 과학 블로그라고 한다. 블로그를 방문해 보면 히스패닉 문화나 흑인 과학자에게 경의를 표하는 등 과학 그 이상의 정신을 담고 있었다. 별 영양가도 없는 유튜브에서 이상한 뉴스, 해괴한 동영상을 보느니 이런 곳에 올라온 자료를 보는 것이 훨씬 나을 것이다.

새롭게 제안된 분류 체계에서 B. velezensisB. siamensis는 어떻게 자리를 잡고 있는지 아직 상세하게 살펴보지는 못하였다. Farrance가 소개한 논문(Patel and Gupta, Int. J. Syst. Evol. Microbiol. 2020;70:406–438 링크)의 그림을 보면 이들은 전부 B. subtilis clade에 속하므로 그 분류학상 위치가 달라지지는 않을 것이다.

Clostridium botulinum도 더하면 더했지 바실러스보다 나은 상황이 아니다. 내가 몇 가지 분석을 해 보았을 때 genus 수준에서 재분류를 해야 함이 명백하다. 그런데 누군가 이를 논문으로 정식으로 제안을 하여 미생물 분류학계에서 인정을 받는다면, 질병관리청과 같이 이 세균을 법률로써 다루어야 하는 공식 기관에서는 많은 어려움을 겪게 된다. 예를 들어서 보툴리눔이 4개의 새로운 종으로 나뉜다고 가정해 보자. 몇 가지 법에서 정의한 고위험성병원체 체계를 이에 맞추어 고쳐야 한다.

대장균(Escherichia coli)는 세균성 이질을 일으키는 Shigella와 유전체학적 기준으로는 다를 바가 없다. 그러나 이를 만약 한 종으로 합쳐 버린다면? 식품에는 허용하는 대장균의 수가 있지만 내가 알기로 이질균은 있어서는 안된다. 그러나 과학적으로 상당한 근거가 있다 하더라도 그 경계를 허물거나 혹은 새롭게 만드는 것의 파급 효과는 상당히 크다. 미생물 분류의 문제가 과학만으로 끝나는 것이 아니라 국민의 안전 및 보건을 다루는 영역까지 건드린다는 것이 엄연한 사실이다.

'아버지를 아버지라 부르지 못하는' 안타까운 일이 미생물 학계에서도 벌어지고 있다. 

EMBOSS "msbar" 명령어는 좀 이상하다

$ wossname msbar
Find programs by keywords in their short description
SEARCH FOR 'MSBAR'
msbar  Mutate a sequence

EMBOSS의 mabar 명령으로 박테리아 유전체 염기서열에 인위적으로 SNP를 도입한 뒤 몇 가지 계산 작업을 하였다. SNP의 수는 10개에서 200까지 총 20 단위로 하였고, 30번씩을 반복하였다. msbar는 도입한 염기 변이의 위치를 별도로 제공하지는 않는다. 

SNP 검출 프로그램을 사용하여 내가 과연 제대로 일을 하고 있는지 궁금하여 각 변이 유전체에 대하여 최종 점검을 해 보았다. 결과는 너무나 이상하였다. msbar를 통하여 도입한 수에 비하여 약 75%에 불과한 숫자가 나오는 것이 아닌가. Sensitivity나 PPV(positive predictive value) 전부 99%를 훨씬 넘는 프로그램을 썼는데 이럴 수는 없다.

T. Seemann의 snp-dists를 사용하여 원본 유전체와 돌연변이 유전체를 직접 비교해 보았다. insertion/deletion은 전혀 없이 염기 치완 돌연변이만 도입하였으므로, 두 파일을 합쳐 놓으면 aligned FASTA 파일과 다를 이유가 없기 때문이었다. 결과는 역시 이상하게 나왔다. 모든 샘플을 다 건드리지는 않았지만 도입한 변이 수의 80%만이 실제로 존재하는 것으로 확인되었다. 이런 결과를 이용할 수는 없다.

CFSAN SNP Pipeline(PeerJ Computer Science 2015년 논문 링크)에서 성능평가용으로 개발한 SNP Mutator 프로그램을 써 보기로 하였다. 설정할 파라미터가 많지만 무엇보다도 돌연변이를 도입한 위치와 염기 정보를 고스란히 제공하기 때문에 결과물을 믿을 수 있다. 이 프로그램으로만든 돌연변이 유전체를 이용하여 필요한 계산을 하고 확인을 위해 SNP를 검출해 보았다. 놀랍게도 도입한 숫자가 거의 그대로 검출되었다. 결국 성능이 의심스러운 돌연변이 도입 프로그램을 쓰는 바람에 일주일을 허비한 셈이 되었다. 하지만 모든 과정을 일괄적으로 실행하는 스크립트와 결과 분석용 R 코드를 그런대로 잘 정비해 두었기에 SNP Mutator로부터 새로 시작하는 것은 그렇게 어렵지 않았다.

SNP Mutator의 중요한 특징은 다음과 같다.

  • Mutations can be any number of single-base substitutions, insertions, and deletions at randomly chosen positions, uniformly distributed across the genome.
  • Mutations can be chosen from a subset (pool) of all possible positions.
  • Replicates can be partitioned into multiple groups with each group sharing a pool of eligible positions.

의심의 눈초리를 거두지 말아야 한다. 언제 어떤 실수를 할지 모르므로.

2021년 9월 14일 화요일

[하루에 한 R] for loop를 이용하여 데이터프레임 생성하기

Column/Row를 구성하는 벡터가 전부 준비된 상태에서 데이터프레임을 만드는 것은 비교적 쉽다. 기존에 존재하는 데이터프레임을 cbind() 함수로 합치는 것도 마찬가지이다. 그런데 합쳐야 할 벡터가 수십 개 이상 된다고 하자. 이를 일일이 타이핑하기는 곤란하다. 반복문을 쓰지 않고서는 매우 어렵다. 

EMBOSS의 msbar 명령을 이용하여 박테리아 유전체 서열에 염기치환돌연변이를 일정하게 도입하였다. 그 각각이 원본 유전체 서열('ancestor'에 해당)에 대하여 얼마나 멀어졌는지를 Mash로 측정해 보았다. 목표로 하는 돌연변이 수에 대하여 msbar는 총 30회를 실시하였고, 돌연변이의 수는 10, 20, 30..200으로 하였다. 결과물은 전부 하나의 파일(dist.tab)에 저장하였다. 

$ head -n 5 dist.tab 
GCF_000008445.1.010.00.c.fnm	GCF_000008445.1.fna	1.61302e-06	0	9999/10000
GCF_000008445.1.010.01.c.fnm	GCF_000008445.1.fna	4.8398e-06	0	9997/10000
GCF_000008445.1.010.02.c.fnm	GCF_000008445.1.fna	0	0	10000/10000
GCF_000008445.1.010.03.c.fnm	GCF_000008445.1.fna	1.61302e-06	0	9999/10000
GCF_000008445.1.010.04.c.fnm	GCF_000008445.1.fna	9.68178e-06	0	9994/10000

첫번째 컬럼이 돌연변이 유전체 FASTA 파일의 이름이다. fna라는 흔한 확장자를 fnm('m' for mutation)으로 고쳤다. 파일명 중간쯤에 '010'이라는 숫자가 바로 돌연변이 수에 해당한다. 만약 10, 20...으로 표기를 했다면, 100을 넘어가는 결과와 함께 다룰 때 sort에 주의해야 한다. 그래서 약간 귀찮지만 이런 파일명을 쓴 것이다. 

하나의 돌연변이 숫자에는 총 30개의 Mash distance(위 자료에서 세번째 컬럼)가 있다. 이것을 뽑아내어 각기 다른 컬럼으로 만들고자 하는 것이 오늘의 목표이다. 돌연변이의 수는 총 10에서 200까지 10 단위로 증가하므로 20개가 되고, 이것이 목표로 하는 데이터프레임의 전체 컬럼 수가 된다. Row의 수는 30개가 된다.

일반적인 슬라이싱을 통해서 원본 데이터프레임의 일부를 잘라낸 뒤 새 데이터프레임에 한 컬럼씩 붙여 넣는 방법이 있을 것이라 생각했는데 잘 되지 않았다. 검색을 거듭한 결과 리스트를 써야 함을 알게 되었다. 참조했던 웹사이트가 어디였는지는 기억을 하지 못하겠다. do.call() 함수를 쓰는 방법을 잘 알아야 될 것이다.

> header = sprintf(seq(10,200,10), fmt='%03d')
> header
 [1] "010" "020" "030" "040" "050" "060" "070" "080" "090" "100" "110" "120"
[13] "130" "140" "150" "160" "170" "180" "190" "200"
> df = read.table("dist.tab", sep="\t", row.names=1) > datalist = list() > for(i in header) { + pattern = paste(".", i, ".", sep="") + datalist[[i]] = df[grepl(pattern, row.names(df)), 2] + } > df.2 = do.call(cbind, datalist) > View(df.2)

최적화된 R code라고 확신을 할 수는 없다. '.010.' 형태의 패턴을 추출할 때, 앞뒤의 점은 정규표현식에서 임의의 문자 하나에 대응하는 점이 아니라 문자 그대로의 '.'임이 중요한데, 이것이 grepl() 함수에서 정확히 인식되고 있는 것인지를 잘 모르겠다. grep()은 인덱스를 반환하지만 grepl()은 TRUE 또는 FALSE를 반환한다고 한다. 어쨌거나 View(df.2)로 확인을 하면 다음과 같이 내가 의도한 데이터 변환이 이루어졌음을 알 수 있다.

나의 '데이터 주무르기'는 그야말로 마음 내키는 대로이다. 모든 조작을 Perl에서 하던 시절도 있었고, 요즘은 bash script와 awk/sed 등을 적절히 섞어서 쓰는 빈도가 늘어났다. 그러다가도 예외 사항이 별로 없이 매트릭스 형태로 잘 짜여진 데이터 파일을 보면 R에서 작업을 하고 싶어진다. 사용했던 코드를 노트 파일과 컴퓨터 작업 공간에 잘 저장해 두는 것도 좋은 버릇이라고 자평한다.

점점 까다로와지는 공공기관의 전산 보안

주말에 집에서 일을 하기 위해 사무실에서 쓰던 노트북 컴퓨터를 들고 퇴근하였다. 월요일(어제) 외부에서 있을 과제 중간 점검 발표를 준비하기 위해 파워포인트 자료를 마지막으로 점검하려는데 보안 정책에 위배된다면서 와이파이 접속이 차단되는 것이었다. 아, 드디어 이런 날이 오고 말았구나! 집에서 이더넷 케이블을 직접 연결해 보지는 않았다. 와이파이 접속이 안되는 노트북이 무슨 쓸모가 있는가?

컴퓨터 전원을 껐다가 다시 켰더니 이제는 얼굴 인식을 위해 작동하던 내장 카메라도 제 기능을 하지 못하여 PIN을 입력해야만 했다. 노트북이 연구소 전산망 내에 있지 않은 상황이라면 이를 잠재적인 위험 환경으로 간주하고, 입출력이 이루어질 수 있는 주변 기기를 통제하는 보안 강화 모드를 강제하는 것으로 여겨진다. 그것이 이제는 너무나 당연하게 여겨지는 와이파이라 해도 말이다.

연구소 안에서 상용메일 접속이 차단된 것은 꽤 오래 전의 일이다. 아마존웹서비스와 같은 클라우드도 당연히 되지 않는다. USB 매체 사용도 매우 까다로와서 아예 쓰지 않는다. 리눅스를 설치한 컴퓨터는 상황이 약간 낫지만, 이런 사실을 함부로 발설(?)하다가는 그나마도 쓰지 못하게 될까 두렵다. 이러다가 USB 마이크로폰도 작동이 안되는 날이 오는 것은 아닐까? 사무실 데스크탑에 연결한 웹캠은 다행스럽게도 아직 작동을 잘 한다.

공공기관에서 접속하면 안되는 '나쁜' 웹사이트를 국정원에서 직접 관리하는 것이 정말 옳은 일인지 잘 모르겠다.

공공기관의 전산망 보안은 외부의 해킹 시도나 악성 코드 침투를 방지하는 것으로부터 한층 더 강화되어 근무자가 내부의 자료를 외부로 가져가지 못하게 하는 것으로 바뀌어 가는 추세이다. 물론 일반 회사는 이보더 더 강도 높은 보안 정책을 유지한다. 가장 대표적인 것은 문서에 자물쇠를 거는 DRM이 있고(보안 해제 권한은 몇몇 높은 사람들만 갖고 있음), 프린터도 철저하게 통제한다. 휴대폰은 당연히 보안 프로그램이 깔려 있어서 출근을 하여 회사 공간에 들어가면 카메라가 작동되지 않는다.

정부 조직은 내가 근무하는 출연연보다는 불편하고, 일반 기업보다는 약간 느슨한 정책을 쓰는 것으로 알고 있다.

아마도 노트북 컴퓨터의 경우 외부 반출을 위해 공식적으로 거치는 절차가 있을 것이다. 문제는 연구비로 구입한 노트북이든 개인이 구입한 노트북이든 연구소 내에서 전산망에 접속하려면 보안 솔루션을 깔아야 한다는 것이다. 아주 엄격하게 말하자면, 개인 노트북을 연구소에 가져와서 연구소 전산망에 접속하면 안 된다. 회의실 근처에 있는 공개형 와이파이 정도만 써야 한다. 그러나 이것으로는 내부 리눅스 서버에 접속을 할 수 없다. 코로나 시대를 맞아서 재택 근무를 권장하면서도 실제 환경은 이를 따라가지 못한다.

민감한 정보를 다루는 정보 기관이나 민간 기업이 아니라면 약간은 유연한 정책을 실행하면 안 되는 것일까? 모처럼 연구비로 성능이 좋은 노트북을 구입하였는데 외부에서 쓰지 못한다면 여간 안타까운 일이 아니다. 

공식 반출 허가를 받지 않고 노트북을 외부에 너무 들고 다니는 것도 문제가 될 소지는 있다. 아예 집에다 가져다 놓고 가정용(=개인용)으로 쓰거나, 심지어는 퇴직 이후에도 반납을 하지 않는 철면피 같은 사람도 있으니 말이다.

2021년 9월 9일 목요일

정말 마시기 싫은 음료

새벽 4시에 일어나서 벌컥벌컥 들이마시는 쿨프렙 산.정말 먹기 싫은 맛이다. 누군가 평하기를 이온음료에 조미료를 탄 것 같은 시큼하고 느끼한 맛이라고 했는데, 그 말이 딱 맞다. 1리터를 조제해서 1시간 안에 마시고, 이어서 맹물 1리터를 또 1시간 안에. 이 과정을 어제 저녁 일곱 시에도 했고, 새벽 네 시에도 한 차례를 더 해야 한다. 

으아! 이 찝찌름한 액체를 아직 250ml 더 마셔야 한다. 그러고 나서 또 화장실을 들락거리게 될 것이다. 아침에는 일찍 병원 건강검진 센터로 가야 하니 그 사이에 잠을 제대로 자기는 틀렸다.

폴리에틸렌 클리콜과 아스코르빈산을 주성분으로 하는 장세척 용도의 의약품이다. 아마도 엄청난 삼투압에 의햐여 설사를 유발하는 것일 게다. 안전성은 충분히 입증된 의약품이지만, 장에 큰 부담을 주는 일은 아닐까? 장내 미생물 살림터를 홀랑 뒤집어 엎는 일이니 말이다. 

장이 깨끗한 편이라 이제 겨우 생애 두 번째 대장 내시경 검사를 받는다. 최초 검사는 5년 전이었다. 만약 이것을 매년 받으라면? 정말 내키지 않는다. 어차피 의식하 진정(소위 '수면') 내시경이라서 검사 과정 자체는 괴롭지 않은데, 전날 밤부터 당일 새벽까지 의식처럼 치러야 하는 '쿨프렙 대잔치'는 여간 고역이 아니다. 아픔을 유발하는 것은 아니지만 결코 유쾌하지 못한 자극을 통한 괴로움이란...

맹물이 가장 맛있게 느껴질 때는? 격하게 땀을 흘리고 나서 마실 때가 아니다. 쿨프렙을 1리터 마시고 나서 바로 뒤에 맹물을 마실 때이다.

마지막 남은 쿨프렙을 다 마셔버렸다. 뱃속이 다시금 요동을 친다.

2021년 9월 3일 금요일

[독서 기록] 다정한 무관심 및 내 친구 압둘와합을 소개합니다

다정한 무관심(함께 살기 위한 개인주의 연습) 지은이: 한승혜

개인주의는 이기주의와 동의어가 아니다. 개인주의의 반대발이 전체주의라는 것을 떠올린다면 이런 오해는 쉽게 풀릴 것이다. SNS에 짧게 쓴 글들을 정리하여 책으로 묶었다. 나는 블로그를 제외하면 남들이 다 한다는 SNS를 거의 하지 않는 사람이라서, 이런 공간에서 의견을 올리고 공감을 얻어가 토론을 한다는 것 자체를 중요하게 생각하지 않는다. 나에게는 '없는 세상'이라고나 할까... '메타버스'도 그런 것이 아닐까한다. 여담이지만 세상에 가장 쓸모없는 것은 공개 게시판이나 덧들이라고 생각한다. 어쨌거나 이것도 책을 만드는 한 방식이 될 수도 있겠다.

내 친구 압둘와합을 소개합니다(어느 수줍은 국어 교사의 특별한 시리아 친구) 지은이: 김혜진

시리아의 좋은 집안에서 태어난 청년이 자국을 방문했던 한국인 여행자와 겪은 일을 계기로 국교도 없던 한국으로 법학 공부를 하러 내한하게 된다. 그 사이에 시리아에서는 민주화 혁명과 내전이 일어나고 가족들은 난민 신세가 된다. 우연한 기회에 압둘와합을 알게 된 저자는 얼떨결에 시리아를 돕기 위한 단체를 만들게 되고, 어려움 속에서도 난민 어린이들을 가르칠 수 있는 학교까지 설립을 하게 된다. 

중간 중간에 시리아를 소개하기 위해 압둘와합이 직접 쓴 글이 삽입되어 있다. 만약 내가 한국을 소개하는 글을 써 달라는 부탁을 받는다면, 정확하고도 공정한 글을 쓰기 위해 얼마나 고민을 하게 될까? 어쩌면 소심한 나는 부담스럽다고 거절을 할지도 모른다.

현재진행형인 아프가니스탄 사태에 밀려서 시리아에서 일어났던 일에 대해 한국인들이 관심을 덜 갖게 된 것 같다. 한국과 시리아는 여전히 미수교 상태이고, 압둘와합은 한국인으로 귀화하였다.

교양으로 읽는 세계 종교사 지은이: 시마다 히로미, 옮긴이 김성순

이리저리 건너뛰어가면서 읽다가 대여 기간이 다 되어서 부득이하게 손을 놓게 된 책이다. 최근 불교에 대한 관심을 갖게 되고, 이슬람 세계에서 벌어지는 일을 이해해 보고자 빌리게 되었다. 여름날 산사에 들르면 백중절(음력 7월 15일)과 관련한 행사로 분주한 것을 볼 수 있다. 사후세계나 지옥, 윤회와 관련한 개념은 원래 석가모니가 처음 가르침을 시작하던 당시에는 없는 개념이 아니었을까? 삼국시대때 우리나라에 전래된 불교는 중국을 거치면서 원래의 모습과는 다르게 된 것이 아니었을까? 이런 궁금증을 해결해 보려고 책을 읽기 시작했으나 아직 답을 얻지는 못했다.